Paul Blainey
Associate Professor, MIT Biological Engineering
SENSE.nano 2021
Monday, October 25
Session 2: Physiological Monitoring
3:20 PM - 3:35 PM EDT
Abstract
Genetic screens are important life science research tools that can teach us how genetic elements in our bodies’ cells relate to normal health, disease, and the way drug therapies work by checking the effects of engineered genetic changes in laboratory samples. Recently, CRISPR and other technologies have enabled screening of many genetic elements at once in ‘pooled’ formats.
Here, Blainey will present optical pooled screening — a new method of pooled genetic screening – which enables researchers to link pooled genetic ‘perturbations’ with visually observable phenotypes in human cells. This works by sequencing a tag inside each cell that identifies the genetic perturbations present. Microscopy-based readout enables genetic screens for new types of biological functions and at scales needed for comprehensive ‘genome-wide’ screens of tens or hundreds of millions of cells.
Biography
Paul Blainey is a core member of the Broad Institute of MIT and Harvard and an associate professor in the Department of Biological Engineering at MIT. An expert in microanalysis systems for studies of individual molecules and cells, Blainey is applying such technologies to advance understanding of functional properties of molecules and cells and the mechanisms underlying these properties. Broadly, research in the Blainey group integrates molecular, optical, microfluidic, and computational tools to understand and engineer cellular activities related to a wide range of health challenges.